Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance
نویسندگان
چکیده
In many application domains there is an increasing trend for mixed-criticality systems with functions of different assurance levels on shared computing platforms. Today’s CAN-based platforms do not support the requirements of mixed-criticality systems. A single CAN bus provides low cost, real-time support and flexibility for applications where the communication service is not safety-relevant. Faulttolerance extensions for CAN impose incompatibility to legacy applications, high cost and overhead for the entire CAN communication. This paper introduces a CAN infrastructure for fault isolation and selective fault-tolerance, which permits a balanced trade-off between cost and fault-tolerance for each subsystem of a mixed-criticality system. We introduce replicated CAN routers that perform fault isolation based on a priori knowledge of the permitted behavior of CAN nodes. Fault masking is supported selectively through the redundant transmission of messages from safety-critical subsystems. The CAN routers perform input agreement on pending messages for replica deterministic behavior, as well as output agreement on the delivery status of messages. Software layers hide the fault-tolerance mechanisms to establish compatibility to legacy software. The benefits of the proposed communication infrastructure are demonstrated in a simulation of an example system.
منابع مشابه
Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملA comparison between Hardware and Software Solutions for Resource Partitioning in Multicore-based Mixed Criticality Applications
The paper proposes a comparison between hardware and software solutions for resource partitioning in the scenario of a multi-core based mixed criticality application. A reference avionic application has been implemented in two versions: one using a software partitioning solution and one using a hardware partitioning solution. Both versions of the system have been evaluated using fault injection...
متن کاملTowards a Contract-based Fault-tolerant Scheduling Framework for Distributed Real-time Systems
The increasing complexity of real-time systems has lead to the adaptation of component based methods for their development which has a promising potential for faster and more cost effective development of complex real-time systems by facilitating reuse of the real-time components. This is enabled by the components’ composition using contracts, which ensures ’correctness by construction’. Modern...
متن کاملMixed Criticality Systems: Beyond Transient Faults
Adopting mixed-criticality architectures enable safe sharing of computational resources between tasks of different criticalities consequently leading to reduced Size, Weight and Power (SWaP) requirements. A majority of the research in mixed-criticality systems focuses on scheduling tasks whose Worst Case Execution Times (WCETs) are certified to varying levels of assurances. If any given task ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014